21 research outputs found

    Semantic Pose using Deep Networks Trained on Synthetic RGB-D

    Full text link
    In this work we address the problem of indoor scene understanding from RGB-D images. Specifically, we propose to find instances of common furniture classes, their spatial extent, and their pose with respect to generalized class models. To accomplish this, we use a deep, wide, multi-output convolutional neural network (CNN) that predicts class, pose, and location of possible objects simultaneously. To overcome the lack of large annotated RGB-D training sets (especially those with pose), we use an on-the-fly rendering pipeline that generates realistic cluttered room scenes in parallel to training. We then perform transfer learning on the relatively small amount of publicly available annotated RGB-D data, and find that our model is able to successfully annotate even highly challenging real scenes. Importantly, our trained network is able to understand noisy and sparse observations of highly cluttered scenes with a remarkable degree of accuracy, inferring class and pose from a very limited set of cues. Additionally, our neural network is only moderately deep and computes class, pose and position in tandem, so the overall run-time is significantly faster than existing methods, estimating all output parameters simultaneously in parallel on a GPU in seconds.Comment: ICCV 2015 Submissio

    A novel real-time edge-preserving smoothing filter

    Get PDF
    The segmentation of textured and noisy areas in images is a very challenging task due to the large variety of objects and materials in natural environments, which cannot be solved by a single similarity measure. In this paper, we address this problem by proposing a novel edge-preserving texture filter, which smudges the color values inside uniformly textured areas, thus making the processed image more workable for color-based image segmentation. Due to the highly parallel structure of the method, the implementation on a GPU runs in realtime, allowing us to process standard images within tens of milliseconds. By preprocessing images with this novel filter before applying a recent real-time color-based image segmentation method, we obtain significant improvements in performance for images from the Berkeley dataset, outperforming an alternative version using a standard bilateral filter for preprocessing. We further show that our combined approach leads to better segmentations in terms of a standard performance measure than graph-based and mean-shift segmentation for the Berkeley image dataset.Peer ReviewedPostprint (author’s final draft

    Manipulation monitoring and robot intervention in complex manipulation sequences

    Get PDF
    Compared to machines, humans are intelligent and dexterous; they are indispensable for many complex tasks in areas such as flexible manufacturing or scientific experimentation. However, they are also subject to fatigue and inattention, which may cause errors. This motivates automated monitoring systems that verify the correct execution of manipulation sequences. To be practical, such a monitoring system should not require laborious programming.Peer ReviewedPostprint (author's final draft

    Manipulation monitoring and robot intervention in complex manipulation sequences

    Get PDF
    Trabajo presentado al IX Robotics Science and Systems: "Workshop on Robotic Monitoring" (RSS-WRM), celebrado en Berkeley (US) del 12 al 16 de julio de 2014.-- et al.Compared to machines, humans are intelligent and dexterous; they are indispensable for many complex tasks in areas such as flexible manufacturing or scientific experimentation. However, they are also subject to fatigue and inattention, which may cause errors. This motivates automated monitoring systems that verify the correct execution of manipulation sequences. To be practical, such a monitoring system should not require laborious programming.The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 (Specific Programme Cooperation, Theme 3, Information and Communication Technologies) under grant agreement no. 269959, IntellAct.Peer Reviewe

    Real-time segmentation of stereo videos on a portable system with a mobile GPU

    Get PDF
    In mobile robotic applications, visual information needs to be processed fast despite resource limitations of the mobile system. Here a novel real-time framework for model-free spatio-temporal segmentation of stereo videos is presented. It combines real-time optical flow and stereo with image segmentation and runs on a portable system with an integrated mobile GPU. The system performs on-line, automatic and dense segmentation of stereo videos and serves as a visual front-end for preprocessing in mobile robots, providing a condensed representation of the scene which can potentially be utilized in various applications, e.g., object manipulation, manipulation recognition, visual servoing. The method was tested on real-world sequences with arbitrary motions including videos acquired with a moving camera.The work has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 (Specific Programme Cooperation, Theme 3, Information and Communication Technologies) under grant agreement no. 269959, IntellAct. B. Dellen was supported by the Spanish Ministry for Science and Innovation via a Ramon y Cajal fellowship. K. Pauwels acknowledges support from the Spanish Ministry for Science and Innovation via a Juan de la Cierva fellowship (JCI-2011-11019).Peer reviewe

    A novel real-time edge-preserving smoothing filter

    Get PDF
    Presentado a la 8th International Conference on Computer Vision Theory and Applications celebrada en Barcelona del 21 al 24 de febrero de 2013.The segmentation of textured and noisy areas in images is a very challenging task due to the large variety of objects and materials in natural environments, which cannot be solved by a single similarity measure. In this paper, we address this problem by proposing a novel edge-preserving texture filter, which smudges the color values inside uniformly textured areas, thus making the processed image more workable for color-based image segmentation. Due to the highly parallel structure of the method, the implementation on a GPU runs in real-time, allowing us to process standard images within tens of milliseconds. By preprocessing images with this novel filter before applying a recent real-time color-based image segmentation method, we obtain significant improvements in performance for images from the Berkeley dataset, outperforming an alternative version using a standard bilateral filter for preprocessing. We further show that our combined approach leads to better segmentations in terms of a standard performance measure than graph-based and mean-shift segmentation for the Berkeley image dataset.The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 (Specific Programme Cooperation, Theme 3, Information and Communication Technologies) under grant agreement no. 269959, Intellact. B. Dellen acknowledges support from the Spanish Ministry of Science and Innovation through a Ramon y Cajal program.Peer Reviewe

    A novel real-time edge-preserving smoothing filter

    No full text
    The segmentation of textured and noisy areas in images is a very challenging task due to the large variety of objects and materials in natural environments, which cannot be solved by a single similarity measure. In this paper, we address this problem by proposing a novel edge-preserving texture filter, which smudges the color values inside uniformly textured areas, thus making the processed image more workable for color-based image segmentation. Due to the highly parallel structure of the method, the implementation on a GPU runs in realtime, allowing us to process standard images within tens of milliseconds. By preprocessing images with this novel filter before applying a recent real-time color-based image segmentation method, we obtain significant improvements in performance for images from the Berkeley dataset, outperforming an alternative version using a standard bilateral filter for preprocessing. We further show that our combined approach leads to better segmentations in terms of a standard performance measure than graph-based and mean-shift segmentation for the Berkeley image dataset.Peer Reviewe

    Depth-supported real-time video segmentation with the Kinect

    Get PDF
    This research has received funding by the EU GARNICS project FP7-247947 and the EU IntellAct project FP7-269959. B.Dellen acknowledges support from the Spanish Ministry for Science and Innovation via a Ramon y Cajal fellowship. K. Pauwels acknowledges support from CEI BioTIC GENIL (CEB09-0010) of the MICINN CEI program.Peer reviewe

    A novel real-time edge-preserving smoothing filter

    No full text
    The segmentation of textured and noisy areas in images is a very challenging task due to the large variety of objects and materials in natural environments, which cannot be solved by a single similarity measure. In this paper, we address this problem by proposing a novel edge-preserving texture filter, which smudges the color values inside uniformly textured areas, thus making the processed image more workable for color-based image segmentation. Due to the highly parallel structure of the method, the implementation on a GPU runs in realtime, allowing us to process standard images within tens of milliseconds. By preprocessing images with this novel filter before applying a recent real-time color-based image segmentation method, we obtain significant improvements in performance for images from the Berkeley dataset, outperforming an alternative version using a standard bilateral filter for preprocessing. We further show that our combined approach leads to better segmentations in terms of a standard performance measure than graph-based and mean-shift segmentation for the Berkeley image dataset.Peer Reviewe
    corecore